No, electric vehicles won't cause more pollution (or crash the grid)

Once again, the fossil fuel apologists are hard at work in the press trying to lay every possible bit of negative spin to the electric car. In the May 15th online edition of Politico, Jonathan Lesser took a wild swing at our EVs, and missed in his piece: Are electric cars worse for the environment. I couldn't let it slide, and pounded out a rebuttal - which I've pitched to Politico. In case they don't want it, I'll post it below: 

 Chevrolet Volts getting their electrons from the sun.

Chevrolet Volts getting their electrons from the sun.

Oh, my! Electric vehicle drivers will cause more air pollution, but even worse, too many electric vehicles would actually cause utility rates to rise, and could even ‘crash’ the electrical grid. Or, so claims Jonathan Lesser, in the May 15th online edition of Politico.

Lesser, a well-known ‘energy consultant’ and fossil-fuel sector apologist, argues that only the wealthy can afford electric vehicles, and would like you to still believe in the ‘Long Tailpipe Argument’ which suggests that EVs are only as clean as the power that supplies their electrons, and that’s still ‘dirty’.  If that isn’t enough, too many electric cars could crash the grid.

It’s hard to know where to begin with Lesser’s myriad assertions.

It’s easy for somebody with Lesser’s background to ‘cherry pick’ data to prove their point. In this case, he says that new ICE (internal combustion engines) are much ‘cleaner’ when compared to electric vehicles. Yes, new cars are, indeed, cleaner than “a 30-year-old, smoke-belching Oldsmobile”. But, cleaner than an EV? Not so much. That new cars emit “only about 1%” of the pollution of your grandfathers Oldsmobile misses the point of just how dirty those cars were. And, few people stop to think just how ‘dirty’ the process of refining and transporting gasoline is. In fact, a study by the Union of Concerned Scientists found that the extra emissions from making an 80-mile range EV are only about 15% higher than a comparable gasoline car. This extra emission ‘debt’ is quickly recovered by the savings accrued over the driving life of an EV.  The average new gasoline vehicle in the U.S. is rated 25 mpg.  Based on where EVs have been bought to date, the average EV now produces emissions equivalent to a hypothetical gasoline car getting 73 mpg. We’re not aware of any mass-production fossil fuel car on the market today that achieves that. 

The Union of Concerned Scientists provides a dandy online tool to calculate just how ‘clean’ your EV is according to where you live. In the Reno, Nevada area, a 2014 Nissan LEAF contributes the equivalent emissions to global warming as a gasoline vehicle getting 107 mpg, for example.

Then, Lesser invokes the discredited ‘long tailpipe’ argument (EV electrons are only as clean as the power source they come from). He says “The energy doesn’t come from nowhere”.  Yes, the energy is coming from a rapidly greening grid. He should note that no new coal-fired power plants are being built, while older plants are being phased out. And, since renewables are quickly becoming less expensive than fossil fuel generated electrons, it benefits the bottom-line of any utility to invest in cleaner, renewables.

Lesser says that EV tax incentives (or ‘subsidies’ in his terms) “will disproportionately benefit the wealthy at the expense of the poor”. Nice try, making electric cars a ‘class’ issue. EV naysayers point out that the top-selling EVs with the longest range are in the $40,000 range. ‘Longest range’ is the key. The price of EVs did increase in 2016, but that reflected faster growth in more expensive models and doesn’t take into account increases in driving range through battery improvements. Reductions in battery costs are currently translating into more range rather than lower per vehicle prices. As more cars with ranges of over 300 miles become the norm, EV prices will fall to levels comparable with conventional vehicles. EVs like the 80+ mile range Nissan LEAF are already considered ‘affordable’ by most metrics. And, since most people drive less than 40 miles per day to work and back, or around town that's a good fit for most people. So, that leaves a lot of EVs - both used and new - to supply those of us who aren’t in the Tesla crowd. 

Buying an electric car is one of the most influential decisions a household can make to both reduce emissions, and save money.  The savings on gasoline alone can average more than $800 per year, on top of savings for maintenance since EVs don’t need smog checks, oil changes, transmission repairs, new fuel pumps or timing belts. The economically disadvantaged would benefit from EV ownership over conventional vehicles.

Then, Lesser asserts that utilities - and by extension, ratepayers - will be saddled with paying for “the wires and charging stations” which will raise rates. You’d think the electrical grid was born yesterday. Conversely, electric utilities stand to benefit from EV adoption as they can generate significant new revenues (Time-Of-Use home electric vehicle charging), while facilitating the creation of widespread, convenient network of charging stations. Once a certain scale is achieved in EV adoption, utilities can bring more renewable energy into the system from very large, advanced grid-scale storage batteries (like Tesla just installed in Australia). And, with more widespread adoption, it’s estimated that utilities will capture enough incremental revenue from those who charge their EVs at home to increase access to the ‘garageless’ in lower-income areas, and grow their markets there, as well. This also includes deploying charging stations at workplaces and other visible locations that will in turn drive EV and electric utility sales and consumption. This puts the ‘lie’ to wealthy EV owners taking advantage of the poor.

Economically disadvantaged Americans would particularly benefit from adopting electric vehicles. According to the U.S. Department of Energy: "the average U.S. household spends nearly one-fifth of its total family expenditures on transportation, (and) saving on fuel can make a big difference in terms of the average family's budget. Electricity is less expensive than gasoline and EVs are more efficient than gasoline vehicles. Electricity prices are also generally much more stable than gasoline prices. On a national average, it costs less than half as much to travel the same distance in an EV than a conventional vehicle. In addition, some utilities offer even cheaper rates at night, which can further reduce your electricity costs. "

As for the claim that mandates for more renewable energy, like those in California, will only serve to drive utility prices up for ratepayers, it isn’t proven out by actual practice. Charging EVs at off-peak times - when the grid is underutilized - increases utility revenues without commensurate cost increases. Lower rates will be an added benefit as the ‘pool’ of potential customers is expanded. And, charging EVs when there is spare grid capacity avoids the need for new capital investments by utilities - which will also build downward pressure on electricity rates. Lesser also doesn’t mention that electric utilities can leverage the growing number of EVs on the road to absorb increasing kilowatts of renewable energy that would otherwise be ‘dumped’ when there isn’t sufficient demand.

EV detractors, like Lesser, make a lot of noise about the amounts of energy that will be needed to balance the U.S. electrical grid in the coming decades. However, that need could also be met by the batteries from as few as 10% of the electric vehicles anticipated to be on the road by that time.

In the future, EV batteries could stand in for large-scale storage batteries when needed via V2G (Vehicle to Grid) or ‘Battery Second Life’ systems. A 2016 Nissan LEAF can store as much electricity as the average American home uses in a day, and be recharged while its’ owner is eating or sleeping. This type of V2G technology is already available in other countries - like Japan - and the Tesla home storage battery that is now available in the U.S. This would further stabilize the grid and also possibly lower rates while easing the transition to a cleaner grid.

What will it take to accomplish this? The transportation sector accounts for about one-third of U.S. carbon pollution. EVs need to account for 40% or more of new vehicle sales by 2030 in order to meet long-term carbon reduction targets. If you think this can’t be done, remember that over a period of two weeks, nearly 400,000 people put down $1,000 deposits for the Tesla Model 3. There is already a pent-up demand for electric vehicles as the old ‘range anxiety’ becomes a quaint artifact of the past.

To this end, utility policies need to be amended to remove the barriers to EV purchases, facilitate a more competitive market for charging services, and prepare utilities to integrate the EV load (which would mean encouraging driver/owners to charge at off-peak times) and later provide V2G services.

Widespread EV adoption is a welcome gift to a competitive, resilient renewable energy market, and hardly the malign influence that the fossil fuel industry would have us believe.

Electric utilities are singularly positioned to provide ubiquitous access to charging (Lesser’s overblown concerns over “wires and charging stations” notwithstanding )—while supporting the grid and facilitating its transition to variable resources like wind and solar energy, benefiting all customers, and returning value to EV drivers.

As electric vehicle advocates, we understand that the issues surrounding a rapidly evolving energy landscape in the U.S. is complex and at times difficult to communicate. And, not everybody is tuned in to the language of megawatts and EV range. However, we don’t think that articles such as the one by Mr. Lesser are helpful, and certainly, do more harm than good by posing specious dog-whistle arguments that appeal only to fossil fuel true believers.